Premium
Experimental and numerical analysis of fire scenarios involving two mechanically ventilated compartments connected together with a horizontal vent
Author(s) -
Pretrel Hugues,
Vaux Samuel
Publication year - 2019
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2695
Subject(s) - computational fluid dynamics , fire dynamics simulator , flow (mathematics) , ventilation (architecture) , environmental science , combustion , marine engineering , mechanics , computer simulation , meteorology , engineering , physics , chemistry , organic chemistry
Summary This work deals with an experimental and numerical investigation of a fire scenario involving two rooms mechanically ventilated and connected together with a horizontal vent. The objective is to improve the understanding of the physical phenomena and to assess the capability of computational fluid dynamics (CFD) numerical simulations to predict flow field for such a fire scenario. The study is based on a set of large‐scale fire experiments performed in the framework of the OECD PRISME‐2 project in the DIVA multi‐room facility of the Institut de Radioprotection et de Sûreté Nucléaire (IRSN) and of numerical simulations performed with the ISIS CFD code. The fire scenario consists of two rooms, one above the other, mechanically ventilated and connected to each other with a horizontal vent of 1 m 2 . The fire is a heptane pool fire located in the lower room. The analysis focuses on the coupling between the burning rate, the flow at the vent, and the configuration of the mechanical ventilation. Several regimes of combustion are encountered from well‐ventilated steady fire to under‐ventilated unsteady and oscillatory fire. The results show that the burning rate is controlled by both the mechanical ventilation and the downward flow from the vent. The numerical simulations highlight the specific pattern of the oxygen concentration field induced by the downward flow at the vent.