z-logo
Premium
Performance of a light timber‐framed compartment in natural fire subjected to lateral load
Author(s) -
Jessop Daniel,
Abu Anthony,
Wade Colleen,
Spearpoint Michael,
Gerlich Hans
Publication year - 2019
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2684
Subject(s) - truss , ceiling (cloud) , roof , structural engineering , chord (peer to peer) , fire test , structural load , environmental science , engineering , geotechnical engineering , computer science , distributed computing
Summary A common approach for designing buildings for lateral stability during and post‐fire in New Zealand is to ensure that a fire‐rated structure does not collapse when subjected to a nominal horizontal force. For external walls of residential buildings, which are required to resist a lateral load of 0.5 kPa, it is hypothesised that the adjacent unrated construction could provide sufficient support. A natural fire experiment has been conducted to evaluate the fire performance of a laterally loaded light timber‐framed compartment, with external dimensions of 4.33 m × 3.35 m and a stud height of 2.4 m constructed with a timber truss roof and plasterboard ceiling. During the experiment, the ceiling collapsed at 12 to 13 minutes, and the bottom chord of the roof truss failed in tension after 28 minutes which resulted in the fire‐rated wall losing its lateral stability at 28 minutes. The fire severity experienced in the compartment has been estimated to correspond to an equivalent time of 33‐minute exposure to a standard furnace time‐temperature. It is concluded that there is no need to provide nominal (additional) moment‐resisting fixity at the base of the fire‐rated wall when exposed to the standard fire for no more than 30 minutes.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here