z-logo
Premium
Potential for the formation of respirable fibers in carbon fiber reinforced plastic materials after combustion
Author(s) -
Eibl S.
Publication year - 2017
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2423
Subject(s) - materials science , composite material , zinc borate , fiber , cone calorimeter , combustion , thermal decomposition , epoxy , char , boron , composite number , carbon fibers , fire retardant , chemistry , organic chemistry
Summary Fundamental aspects for the thermal decomposition and formation of respirable fragments of carbon fibers are investigated to assess the health hazard of carbon fiber reinforced plastic material after a fire. The influence of temperature (600°C‐900°C)/heat flux (30‐80 kW/m 2 ), time of thermal load (up to 20 minutes), and oxygen exposure is analyzed by means of mass loss and fiber diameter of intermediate modulus and high tenacity fibers with initial diameters of 5 to 7 μm. Various types and concentrations of flame retardants were tested with respect to fiber protection. Epoxy‐based composite specimens (RTM6/G0939) additionally containing aluminum or magnesium hydroxide and/or zinc borate (1‐25 wt% per resin) were analyzed by cone calorimetry. Carbon fiber decomposition increases with combustion/irradiation time and temperature/heat flux, after a threshold temperature (ca 600°C) is exceeded. Critical fiber diameters below 3 μm are reached within minutes and are predominantly observed close to the panel surface in contact with air. Effective fiber protection is achieved by flame retardants acting beyond 600°C, forming thermally resistant layers such as zinc borate. A new field of research is opened identifying flame retardants, which protect carbon fibers in carbon fiber reinforced plastic.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here