z-logo
Premium
Effect of aggregate and water to cement ratio on concrete properties at elevated temperature
Author(s) -
AlJabri Khalifa S.,
Waris Muhammad Bilal,
AlSaidy Abdullah H.
Publication year - 2016
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2351
Subject(s) - wadi , spall , serviceability (structure) , aggregate (composite) , materials science , water–cement ratio , composite material , eurocode , mortar , cement , geotechnical engineering , structural engineering , engineering , cartography , geography
SUMMARY Properties of concrete during and after fire exposure are of significant importance for serviceability and rehabilitation of buildings. This article presents an experimental investigation on the effects of elevated temperature on physical and mechanical properties of concrete made using two types of locally available coarse aggregates (crushed and wadi aggregates) and water‐to‐cement (w/c) ratios of 0.50 and 0.70. Temperature range from 200 °C to 1000 °C was used with intervals of 200 °C. Test results indicate that the weight of concrete reduced with increase in temperature. This reduction was quite sharp beyond 800 °C. Minor spalling was observed in concrete with Wadi aggregates at temperatures beyond 800 °C. The results also reveal that relative strength of concrete decreased as exposure temperature increased. The effect of high temperatures on the strength of concrete was more pronounced in concrete with Wadi aggregates. w/c ratio had insignificant effect on weight loss after exposure to elevated temperatures, but it increased the rate of strength degradation irrespective of aggregate type used. Comparison of results with Eurocode (EC‐2) and American Concrete Institute (ACI) standards indicate that the concrete with both aggregate types can satisfy the limits of siliceous aggregates set by ACI, but concrete made with Wadi aggregates with w/c ratio of 0.50 failed to satisfy limits of EC‐2. Copyright © 2015 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here