Premium
Characterization of highly under‐ventilated fires using the cone calorimeter
Author(s) -
Fourneau Charles,
Delvosalle Christian,
Breulet Hervé,
Brohez Sylvain
Publication year - 2016
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2298
Subject(s) - cone calorimeter , combustion , calorimeter (particle physics) , volume (thermodynamics) , heat of combustion , environmental science , combustion chamber , materials science , propane , chemistry , analytical chemistry (journal) , nuclear engineering , char , environmental chemistry , thermodynamics , physics , engineering , organic chemistry , optics , detector
Summary The cone calorimeter, originally designed with an ‘open configuration‘, may be used in combination with a closed‐combustion chamber in order to test specimens in oxygen‐depleted atmospheres (air vitiation effect) or in fuel‐rich combustion (ventilation effect). However, highly under‐ventilated conditions are not achievable, as a consequence of an overconsumption of oxygen due to the incomplete confinement of the flame and imperfections in the air tightness of the combustion volume. In this work, these issues were solved by lowering the combustion zone, in order to fit a 600 mm chimney on the top of the controlled‐atmosphere chamber, and further improving the sealing of the whole setup. n‐Heptane was used as a reference fuel, and its combustion properties were determined in under‐ventilated conditions. The yields of main combustion species correlated well with the global equivalence ratio, for values of Φ up to three. The use of a Fourier‐transform infrared spectrometer allowed further refinement of the total unburned‐fraction composition. The relative concentration of species like methane, ethylene, or acetylene was shown to be relatively constant over the range of under‐ventilated conditions. Copyright © 2015 John Wiley & Sons, Ltd.