z-logo
Premium
Inorganic polymeric materials for passive fire protection of underground constructions
Author(s) -
Sakkas Konstantinos,
Nomikos Pavlos,
Sofianos Alexandros,
Panias Dimitrios
Publication year - 2013
Publication title -
fire and materials
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.482
H-Index - 58
eISSN - 1099-1018
pISSN - 0308-0501
DOI - 10.1002/fam.2119
Subject(s) - spall , fire protection , fire resistance , environmental science , fire performance , forensic engineering , materials science , engineering , civil engineering , composite material
SUMMARY Protection against fire for reinforced concrete constructions is of great importance worldwide. There is a general perception that concrete structures are incombustible and thus, they have good fire‐resistance properties. In a real fire incident, however, concrete can be subjected to excess temperatures causing severe spalling and serious damage to concrete structures with significant economic cost and high potential risk to human life safety. Although a variety of fire‐protection methods exist, there is always a need for the development of new materials with improved thermophysical properties and low cost. Inorganic polymeric materials are promising from this point of view. They are incombustible, combining excellent physical, chemical, mechanical and thermal properties with low production cost and significant environmental benefits. In this work, the thermophysical properties of ferronickel slag‐based inorganic polymeric materials are studied. The results from the laboratory scale experiments are promising and indicative of the large‐scale behavior of material. The effectiveness of this material has to be proved in large‐scale experiments at higher temperatures simulating several severe fire scenarios as well as under all kinds of mechanical loading before concluding for its applicability as a fire protection system. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here