Premium
A low‐complexity QoS aware resource allocation algorithm for multi pair device‐to‐device (D2D) communications
Author(s) -
Bagheri Hamidreza,
Miranda Bonomi Fernando Alberto,
Katz Marcos
Publication year - 2017
Publication title -
transactions on emerging telecommunications technologies
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.366
H-Index - 47
ISSN - 2161-3915
DOI - 10.1002/ett.3186
Subject(s) - computer science , throughput , quality of service , cellular network , resource allocation , shared resource , computer network , distributed computing , computational complexity theory , spectral efficiency , algorithm , wireless , channel (broadcasting) , telecommunications
Device‐to‐device (D2D) communication underlaying cellular networks is considered a promising technology to enhance network throughput, spectral efficiency, and performance of next generation networks. However, these potential gains hinge on the exploiting mechanism for resource sharing between cellular users (CUs) and D2D pairs. In this paper, we analytically formulate the problem of resource sharing as an optimization problem to maximize network throughput while guaranteeing the required quality‐of‐service (QoS) for both cellular and D2D users. We propose a low‐complexity four‐step resource allocation algorithm to address the optimization problem. We exploit a distance‐based method to derive a resource reuse candidacy graph (RCG) and three exclusive regions (ERs) to evaluate the suitability of resource sharing between each CU and D2D pair. Then, we use a paring mechanism to find the optimal set of D2D pairs for spectrum sharing with each CU to maximize network throughput. The performance of the proposed algorithm is investigated in terms of network throughput, outage probability, and computational complexity. Numerical results show that the proposed algorithm provides high throughput and spectrum utilization with low complexity while efficiently guaranteeing QoS for CUs and D2D pairs.