z-logo
Premium
The power of size. 1. Rate constants and equilibrium ratios for accumulation of organic substances related to octanol‐water partition ratio and species weight
Author(s) -
Hendriks A. Jan,
van der Linde Alex,
Cornelissen Gerard,
Sijm Dick T. H. M.
Publication year - 2001
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.5620200703
Subject(s) - biomagnification , chemistry , bioconcentration , environmental chemistry , trophic level , bioaccumulation , partition coefficient , reaction rate constant , octanol , food chain , lipophilicity , kinetics , ecology , chromatography , organic chemistry , biology , physics , quantum mechanics
Most of the thousands of substances and species that risk assessment has to deal with are not investigated empirically because of financial, practical, and ethical constraints. To facilitate extrapolation, we have developed a model for accumulation kinetics of organic substances as a function of the octanol‐water partition ratio ( K ow ) of the chemical and the weight, lipid content, and trophic level of the species. The ecological parameters were obtained from a previous review on allometric regressions. The chemical parameters, that is, resistances that substances encounter in water and lipid layers of organisms, were calibrated on 1,939 rate constants for absorption from water for assimilation from food and for elimination. Their ratio was validated on 37 laboratory bioconcentration and biomagnification regressions and on 2,700 field bioaccumulation data. The rate constant for absorption increased with the hydrophobicity of the substances with a K ow up to about 1,000 and then leveled off, decreasing with the weight of the species. About 39% of the variation was explained by the model, while deviations of more than a factor of 5 were noted for labile, large, and less hydrophobic molecules as well as for algae, mollusks, and arthropods. The efficiency for assimilation of contaminants from food was determined mainly by the food digestibility and thus by the trophic level of the species. A distinction was made between substances that are stable, that is, with a minimum elimination only, and those that are labile, that is, with an excess elimination probably largely due to biotransformation. The rate constant for minimum elimination decreased with the hydrophobicity of the substance and the weight of the species. About 70% of the variation was explained by the model, while deviations of more than a factor of 5 were noted for algae, terrestrial plants, and benthic animals. Labile substances were eliminated faster than isolipophilic stable compounds, but differences in laboratory elimination and accumulation were small compared with those in field accumulation. Excess elimination by vertebrates was faster than by invertebrates. Differences between terrestrial and aquatic species were attributed to water turnover rates, whereas differences between trophic levels were due to the food digestibility. Food web accumulation, expressed as organism‐organic solids and organism‐food concentrations ratios could be largely explained by ecological variables only. The model is believed to facilitate various types of scientific interpretation as well as environmental risk assessment.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here