z-logo
Premium
An initial probabilistic hazard assessment of oil dispersants approved by the united states national contingency plan
Author(s) -
Berninger Jason P.,
Williams E. Spencer,
Brooks Bryan W.
Publication year - 2011
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.532
Subject(s) - dispersant , environmental science , oil spill , environmental chemistry , contingency plan , environmental toxicology , environmental hazard , pollutant , petroleum , toxicology , waste management , toxicity , chemistry , environmental engineering , biology , dispersion (optics) , ecology , engineering , computer science , organic chemistry , physics , computer security , optics
Dispersants are commonly applied during oil spill mitigation efforts; however, these industrial chemicals may present risks to aquatic organisms individually and when mixed with oil. Fourteen dispersants are listed on the U.S. Environmental Protection Agency (U.S. EPA) National Oil and Hazardous Substances Pollution Contingency Plan (NCP). Availability of environmental effects information for such agents is limited, and individual components of dispersants are largely proprietary. Probabilistic hazard assessment approaches including Chemical Toxicity Distributions (CTDs) may be useful as an initial step toward prioritizing environmental hazards from the use of dispersants. In the present study, we applied the CTD approach to two acute toxicity datasets: NCP (the contingency plan dataset) and DHOS (a subset of NCP listed dispersants reevaluated subsequent to the Deepwater Horizon oil spill). These datasets contained median lethal concentration (LC50) values for dispersants alone and dispersant:oil mixtures, in two standard marine test species, Menidia beryllina and Mysidopsis bahia. These CTDs suggest that dispersants alone are generally less toxic than oil. In contrast, most dispersant:oil mixtures are more toxic than oil alone. For the two datasets (treated separately because of differing methodologies), CTDs would predict 95% of dispersant:oil mixtures to have acute toxicity values above 0.32 and 0.76 mg/L for Mysidopsis and 0.33 mg/L and 1.06 mg/L for Menidia (for DHOS and NCP, respectively). These findings demonstrate the utility of CTDs as a means to evaluate the comparative ecotoxicity of dispersants alone and in mixture with different oil types. The approaches presented here also provide valuable tools for prioritizing prospective and retrospective environmental assessments of oil dispersants. Environ. Toxicol. Chem. 2011; 30:1704–1708. © 2011 SETAC

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here