z-logo
Premium
Critical Review of Read‐Across Potential in Testing for Endocrine‐Related Effects in Vertebrate Ecological Receptors
Author(s) -
McArdle Margaret E.,
Freeman Elaine L.,
Staveley Jane P.,
Ortego Lisa S.,
Coady Katherine K.,
Weltje Lennart,
Weyers Arnd,
Wheeler James R.,
Bone Audrey J.
Publication year - 2020
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.4682
Subject(s) - adverse outcome pathway , vertebrate , biology , endocrine system , nuclear receptor , androgen receptor , evolutionary biology , ecology , bioinformatics , computational biology , zoology , endocrinology , hormone , genetics , prostate cancer , gene , cancer , transcription factor
Recent regulatory testing programs have been designed to evaluate whether a chemical has the potential to interact with the endocrine system and could cause adverse effects. Some endocrine pathways are highly conserved among vertebrates, providing a potential to extrapolate data generated for one vertebrate taxonomic group to others (i.e., biological read‐across). To assess the potential for biological read‐across, we reviewed tools and approaches that support species extrapolation for fish, amphibians, birds, and reptiles. For each of the estrogen, androgen, thyroid, and steroidogenesis (EATS) pathways, we considered the pathway conservation across species and the responses of endocrine‐sensitive endpoints. The available data show a high degree of confidence in the conservation of the hypothalamus–pituitary–gonadal axis between fish and mammals and the hypothalamus–pituitary–thyroid axis between amphibians and mammals. Comparatively, there is less empirical evidence for the conservation of other EATS pathways between other taxonomic groups, but this may be due to limited data. Although more information on sensitive pathways and endpoints would be useful, current developments in the use of molecular target sequencing similarity tools and thoughtful application of the adverse outcome pathway concept show promise for further advancement of read‐across approaches for testing EATS pathways in vertebrate ecological receptors. Environ Toxicol Chem 2020;39:739–753. © 2020 The Authors. Environmental Toxicology and Chemistry published by Wiley Periodicals, Inc. on behalf of SETAC.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here