Premium
Effluent‐dominated streams. Part 2: Presence and possible effects of pharmaceuticals and personal care products in Wascana Creek, Saskatchewan, Canada
Author(s) -
Waiser Marley J.,
Humphries David,
Tumber Vijay,
Holm Jennifer
Publication year - 2011
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.398
Subject(s) - environmental impact of pharmaceuticals and personal care products , effluent , environmental science , sewage , sewage treatment , aquatic ecosystem , triclosan , environmental chemistry , environmental engineering , chemistry , medicine , pathology
Recent worldwide surveys have not only established incomplete removal of pharmaceuticals and personal care products (PPCPs) by sewage treatment plants, but also their presence in surface waters receiving treated sewage effluent. Those aquatic systems where sewage effluent dominates flow are thought to be at the highest risk for ecosystem level changes. The city of Regina, Saskatchewan, Canada (population 190,400) treats its sewage at a modern tertiary sewage treatment facility located on Wascana Creek. The Wascana Creek hydrograph is dominated by one major event: spring snow melt. Thereafter, creek flow declines considerably and in winter treated sewage effluent makes up almost 100% of stream flow. Four water surveys conducted on the creek from winter 2005 to spring 2007 indicated that PPCPs were always present, in nanogram and sometimes microgram per liter concentrations downstream of the sewage treatment plant. This mixture included antibiotics, analgesics, antiinflammatories, a lipid regulator, metabolites of caffeine, cocaine and nicotine, and an insect repellent. Not surprisingly, concentrations of some PPCPs were highest in winter. According to hazard quotient calculations and homologue presence, ibuprofen, naproxen, gemfibrozil, triclosan, erythromycin, trimethoprim, and sulfamethoxazole were present in Wascana Creek at concentrations that may present a risk to aquatic organisms. The continual exposure to a mixture of pharmaceuticals as well as concentrations of un‐ionized ammonia that far exceed Canadian and American water quality guidelines suggests that Wascana Creek should be considered an ecosystem at risk. Although the Wascana Creek study is regional in nature, the results highlight the considerable risks posed to aquatic organisms in such effluent‐dominated ecosystems. Environ. Toxicol. Chem. 2011;30:508–519. © 2010 SETAC