z-logo
Premium
Acute toxicity of polyacrylamide flocculants to early life stages of freshwater mussels
Author(s) -
Buczek Sean B.,
Cope W. Gregory,
McLaughlin Richard A.,
Kwak Thomas J.
Publication year - 2017
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.3821
Subject(s) - polyacrylamide , unionidae , biology , endangered species , mussel , polyacrylamide gel electrophoresis , bivalvia , ecology , environmental chemistry , toxicology , chemistry , mollusca , biochemistry , microbiology and biotechnology , habitat , enzyme
Polyacrylamide has become an effective tool for reducing construction‐related suspended sediment and turbidity, which are considered to have significant adverse impacts on aquatic ecosystems and are a leading cause of the degradation of North American streams and rivers. However, little is known about the effects of polyacrylamide on many freshwater organisms, and prior to the present study, no information existed on the toxicity of polyacrylamide compounds to native freshwater mussels (family Unionidae), one of the most imperiled faunal groups globally. Following standard test guidelines, we exposed juvenile mussels (test duration 96 h) and glochidia larvae (test duration 24 h) to 5 different anionic polyacrylamide compounds and 1 non‐ionic compound. Species tested included the yellow lampmussel ( Lampsilis cariosa ), an Atlantic Slope species that is listed as endangered in North Carolina; the Appalachian elktoe ( Alasmidonta raveneliana ), a federally endangered Interior Basin species; and the washboard ( Megalonaias nervosa ), a common Interior Basin species. We found that median lethal concentrations (LC50s) of polyacrylamide ranged from 411.7 to >1000 mg/L for glochidia and from 126.8 to >1000 mg/L for juveniles. All LC50s were orders of magnitude greater (2–3) than concentrations typically recommended for turbidity control (1–5 mg/L), regardless of their molecular weight or charge density. The results demonstrate that the polyacrylamide compounds tested were not acutely toxic to the mussel species and life stages tested, indicating minimal risk of short‐term exposure from polyacrylamide applications in the environment. However, other potential uses of polyacrylamide in the environment (e.g., wastewater treatment, paper processing, mining, algae removal) and their chronic or sublethal effects remain uncertain and warrant additional investigation. Environ Toxicol Chem 2017;36:2715–2721. Published 2017 Wiley Periodicals Inc. on behalf of SETAC. This article is a US government work and, as such, is in the public domain in the United States of America.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here