z-logo
Premium
Changing tides: Adaptive monitoring, assessment, and management of pharmaceutical hazards in the environment through time
Author(s) -
Gaw Sally,
Brooks Bryan W.
Publication year - 2016
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.3264
Subject(s) - hazard , environmental hazard , environmental science , water quality , hazard analysis , business , environmental resource management , medicine , ecology , engineering , pathology , biology , aerospace engineering
Pharmaceuticals are ubiquitous contaminants in aquatic ecosystems. Adaptive monitoring, assessment, and management programs will be required to reduce the environmental hazards of pharmaceuticals of concern. Potentially underappreciated factors that drive the environmental dose of pharmaceuticals include regulatory approvals, marketing campaigns, pharmaceutical subsidies and reimbursement schemes, and societal acceptance. Sales data for 5 common antidepressants (duloxetine [Cymbalta], escitalopram [Lexapro], venlafaxine [Effexor], bupropion [Wellbutrin], and sertraline [Zoloft]) in the United States from 2004 to 2008 were modeled to explore how environmental hazards in aquatic ecosystems changed after patents were obtained or expired. Therapeutic hazard ratios for Effexor and Lexapro did not exceed 1; however, the therapeutic hazard ratio for Zoloft declined whereas the therapeutic hazard ratio for Cymbalta increased as a function of patent protection and sale patterns. These changes in therapeutic hazard ratios highlight the importance of considering current and future drivers of pharmaceutical use when prioritizing pharmaceuticals for water quality monitoring programs. When urban systems receiving discharges of environmental contaminants are examined, water quality efforts should identify, prioritize, and select target analytes presently in commerce for effluent monitoring and surveillance. Environ Toxicol Chem 2016;35:1037–1042. © 2015 SETAC

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here