z-logo
Premium
Incorporating variability in point estimates in risk assessment: Bridging the gap between LC50 and population endpoints
Author(s) -
Stark John D.,
Vargas Roger I.,
Banks John E.
Publication year - 2015
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.2978
Subject(s) - point estimation , population , risk assessment , pest analysis , ecology , pesticide , biology , predation , toxicology , statistics , environmental science , econometrics , mathematics , computer science , demography , botany , computer security , sociology
Historically, point estimates such as the median lethal concentration (LC50) have been instrumental in assessing risks associated with toxicants to rare or economically important species. In recent years, growing awareness of the shortcomings of this approach has led to an increased focus on analyses using population endpoints. However, risk assessment of pesticides still relies heavily on large amounts of LC50 data amassed over decades in the laboratory. Despite the fact that these data are generally well replicated, little or no attention has been given to the sometime high levels of variability associated with the generation of point estimates. This is especially important in agroecosystems where arthropod predator–prey interactions are often disrupted by the use of pesticides. Using laboratory derived data of 4 economically important species (2 fruit fly pest species and 2 braconid parasitoid species) and matrix based population models, the authors demonstrate in the present study a method for bridging traditional point estimate risk assessments with population outcomes. The results illustrate that even closely related species can show strikingly divergent responses to the same exposures to pesticides. Furthermore, the authors show that using different values within the 95% confidence intervals of LC50 values can result in very different population outcomes, ranging from quick recovery to extinction for both pest and parasitoid species. The authors discuss the implications of these results and emphasize the need to incorporate variability and uncertainty in point estimates for use in risk assessment. Environ Toxicol Chem 2015;34:1683–1688. © 2015 SETAC

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here