Premium
Increase in mercury in Pacific yellowfin tuna
Author(s) -
Drevnick Paul E.,
Lamborg Carl H.,
Horgan Martin J.
Publication year - 2015
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.2883
Subject(s) - mercury (programming language) , yellowfin tuna , tuna , environmental science , fishery , environmental chemistry , oceanography , biology , fish <actinopterygii> , chemistry , geology , computer science , programming language
Mercury is a toxic trace metal that can accumulate to levels that threaten human and environmental health. Models and empirical data suggest that humans are responsible for a great deal of the mercury actively cycling in the environment at present. Thus, one might predict that the concentration of mercury in fish should have increased dramatically since the Industrial Revolution. Evidence in support of this hypothesis has been hard to find, however, and some studies have suggested that analyses of fish show no change in mercury concentration. By compiling and re‐analyzing published reports on yellowfin tuna ( Thunnus albacares ) caught near Hawaii (USA) over the past half century, the authors found that the concentration of mercury in these fish currently is increasing at a rate of at least 3.8% per year. This rate of increase is consistent with a model of anthropogenic forcing on the mercury cycle in the North Pacific Ocean and suggests that fish mercury concentrations are keeping pace with current loading increases to the ocean. Future increases in mercury in yellowfin tuna and other fishes can be avoided by reductions in atmospheric mercury emissions from point sources. Environ Toxicol Chem 2015;34:931–934. © 2015 SETAC