z-logo
Premium
Responses of microbial community from northern Gulf of Mexico sandy sediments following exposure to deepwater horizon crude oil
Author(s) -
Horel Agota,
Mortazavi Behzad,
Sobecky Patricia A.
Publication year - 2012
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.1770
Subject(s) - mesocosm , hydrocarbon , diesel fuel , environmental chemistry , mineralization (soil science) , chemistry , biodegradation , nutrient , alkane , environmental science , organic chemistry , nitrogen
In the present study, microbial community responses to exposure to unweathered Macondo Well crude oil and conventional diesel in a sandy beach environment were determined. Biodegradation was assessed in mesocosm experiments with differing fuel amounts (2,000 and 4,000 mg/kg) and with or without inorganic nutrient amendment. Carbon dioxide production was measured daily for 42 d. Aerobic alkane, total hydrocarbon, and polycyclic aromatic hydrocarbon (PAH) degraders were enumerated in treated and control mesocosms and changes in their abundances were measured weekly. Hydrocarbon mineralization occurred in all treatments. In the inorganic nutrient‐amended treatments, the degradation rates were 2.31 and 2.00 times greater in the 2,000 mg/kg diesel and crude oil treatments, respectively, and 3.52 (diesel) and 4.14 (crude) times higher for the fuel types at the 4,000 mg/kg fuel concentrations compared to unamended treatments. Microbial lag phases were short (<3 d) and alkane and total hydrocarbon degrader numbers increased by five orders of magnitude compared to the uncontaminated treatments within 7 d in most treatments. Hydrocarbon degrader numbers in diesel and in crude oil treatments were similar; however, the PAH degraders were more abundant in the crude oil relative to diesel treatment. These findings indicate that hydrocarbon degradation by extant microbial populations in the northern Gulf of Mexico sandy beach environments can be stimulated and enhanced by inorganic nutrient addition. Environ. Toxicol. Chem. 2012; 31: 1004–1011. © 2012 SETAC

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here