z-logo
Premium
Sampling in the Great Lakes for pharmaceuticals, personal care products, and endocrine‐disrupting substances using the passive polar organic chemical integrative sampler
Author(s) -
Li Hongxia,
Helm Paul A.,
Metcalfe Chris D.
Publication year - 2010
Publication title -
environmental toxicology and chemistry
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.1
H-Index - 171
eISSN - 1552-8618
pISSN - 0730-7268
DOI - 10.1002/etc.104
Subject(s) - chemistry , environmental chemistry , environmental impact of pharmaceuticals and personal care products , partition coefficient , polar surface area , polar , sampling (signal processing) , analyte , surface water , environmental science , chromatography , organic chemistry , environmental engineering , sewage treatment , physics , filter (signal processing) , astronomy , molecule , computer science , computer vision
The passive polar organic chemical integrative sampler in the pharmaceutical configuration (i.e., pharmaceutical‐POCIS) was calibrated for sampling at water temperatures of 5, 15 and 25°C to determine the influence of temperature on chemical‐specific sampling rates ( R S ), thus providing more robust estimates of the time‐weighted average concentrations of pharmaceuticals and personal care products (PPCPs) and endocrine‐disrupting substances (EDS) in surface water. The effect of water temperature and flow on the R S of these analytes was evaluated in the laboratory with a static system. The loss of the test compounds from water by uptake into POCIS was linear over an 8‐d period, and these experimental data yielded R S values in the range of 0.07 to 2.46 L/d across the temperature range for the 30 compounds tested. Water temperature and flow influenced POCIS uptake rates, but these effects were relatively small, which is consistent with the theory for uptake into POCIS samplers. Therefore, under a narrow range of water temperatures and flows, it may not be necessary to adjust the R S for POCIS. Except for acidic drugs and sulfonamide antibiotics, R S values were positively correlated with octanol–water partition coefficients (log K OW ) of the test compounds. A linear relationship was also observed between R S and chromatographic retention times on a C18 reversed‐phase column. These observations may provide a rapid method for estimating the R S of additional chemicals in the POCIS. The application of the R S to POCIS deployed for one month in Lake Ontario, Canada, during the summers of 2006 and 2008 yielded estimates of PPCP and EDS concentrations that are consistent with conventional concentration measurements of these compounds in Lake Ontario surface water. Environ. Toxicol. Chem. 2010;29:751–762. © 2009 SETAC

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here