Premium
Upcycling of polyethylene terephthalate plastic waste to microporous carbon structure for energy storage
Author(s) -
Mirjalili Arash,
Dong Bo,
Pena Pedro,
Ozkan Cengiz S.,
Ozkan Mihrimah
Publication year - 2020
Publication title -
energy storage
Language(s) - English
Resource type - Journals
ISSN - 2578-4862
DOI - 10.1002/est2.201
Subject(s) - materials science , polyethylene terephthalate , supercapacitor , dielectric spectroscopy , cyclic voltammetry , carbon fibers , graphene , chemical engineering , nanotechnology , electrochemistry , composite material , electrode , composite number , chemistry , engineering
Plastic pollution and its harmful effects on the earth ecosystem, which inevitably affect quality of life, have brought attention to the frontiers of research society. Among plastics, polyethylene terephthalate (PET) is used on a massive scale in various sectors of industry, including the automobile, textile, and packaging. Utilizing an electrospinning fiber production technique, we have successfully upcycled PET waste bottle into electrochemical active carbon material that functions as a double‐layer supercapacitor substance. Our detailed electrochemical and analytical characterization revealed that the generated carbon substance is a mixture of amorphous carbon and reduced graphene oxide with relatively high surface area. The electrochemical characterization of the as‐prepared material consisting of cyclic voltammetry, galvanostatic cycling with potential limitations, and electrochemical impedance spectroscopy analyses revealed that the generated medium has combined characteristics of both double‐layer and redox reaction pseudo‐capacitance with self‐strengthening effect along cycling. We believe that the proposed process is scalable with environmental and economic advantages and this study could present opportunities for future research and development.