z-logo
Premium
Morphological signatures of deglaciation and postglacial sedimentary processes in a deep fjord‐lake (Grand Lake, Labrador)
Author(s) -
Trottier AnniePier,
Lajeunesse Patrick,
GagPoiré Antoine,
Francus Pierre
Publication year - 2020
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.4786
Subject(s) - deglaciation , geology , fjord , glacier , glacial lake , moraine , sedimentary rock , glacial period , geomorphology , oceanography , ice sheet , paleontology
Abstract High‐resolution multibeam bathymetric data and acoustic sub‐bottom profiles were recently collected in Grand Lake (Labrador), one of the deepest lake basins in eastern North America, to reconstruct: (1) the retreat of the Laurentide Ice Sheet (LIS) west of Lake Melville and (2) the history of sedimentation since deglaciation in this 54 km‐long, 3 km‐wide fjord‐lake. Our results provide a morphostratigraphical framework that brings new insights to the style and pattern of retreat of the LIS in the region, as well as deglacial and postglacial sedimentary dynamics. Terrestrial glacial lineations observed on a digital elevation model (DEM) provide evidence of a previously undocumented ice stream in the Grand Lake area. This newly mapped ice stream suggests that the calving bay formed in Lake Melville triggered a reorganization of the regional drainage pattern of the LIS. The sedimentary infill of Grand Lake consists of a sequence of deglacial to postglacial sediments that contain deposits related to a series of mass movements. The 8.2 cal ka BP cold event is recorded in Grand Lake by a series of closely spaced moraines deposited at the outlet of the fjord‐lake to form a morainic complex similar to the Cockburn morainic complex on Baffin Island. During deglaciation, a dense dendritic network of proglacial gullies incised into the steep sidewalls of the lake. Since deglaciation, paraglacial and postglacial sedimentation has led to the deposition of large prograding deltas at the fjord head, where density currents remain active today and have formed a series of sediment waves on the frontal slopes and a prodeltaic environment. © 2019 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here