Premium
Is there evidence for global‐scale forcing of Southern Hemisphere Quaternary desert dune accumulation? A quantitative method for testing hypotheses of dune system development
Author(s) -
Thomas David S.G.,
Bailey Richard M.
Publication year - 2017
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.4183
Subject(s) - quaternary , forcing (mathematics) , northern hemisphere , geology , southern hemisphere , physical geography , thermoluminescence dating , sediment , sand dune stabilization , scale (ratio) , desert (philosophy) , climatology , paleontology , earth science , geomorphology , geography , cartography , epistemology , philosophy
Abstract Luminescence dating of desert dune sediments has generated many hundreds of ages, many used in reconstructions of Quaternary environmental changes, others in attempts to elucidate dune processes. Environmental and climatic interpretations of these records have proved problematic and it remains challenging to test hypotheses of the systematic response of dunefields to changes in external forcing in the past and to make predictions of the future. We use a method that quantifies dune sediment accumulation to interpret dune luminescence age datasets, rather than simply using the ages themselves as proxies of change. The Accumulation Intensity method allows periods of dune sediment accumulation, here over the timescale 10 2 –10 5 years, to be identified from compilations of dated sand sea stratigraphic sequences. We apply this approach to two of the largest dune age datasets, from southern Africa and Australia, testing whether or not dunefield accumulation has co‐varied in the Late Quaternary and whether systematic relationships to external drivers at global, hemispheric, regional and local scales can be identified. Copyright © 2017 John Wiley & Sons, Ltd.