Premium
Dunefoot dynamics along the Dutch coast
Author(s) -
Ruessink B. G.,
Jeuken M. C. J. L.
Publication year - 2002
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.391
Subject(s) - storm , geology , storm surge , oceanography , residual , climatology , physical geography , geography , algorithm , computer science
The dynamics of the dunefoot along a 160 km portion of the Dutch coast has been investigated based on a data set of annual surveys dating back to as early as 1850. The linearly detrended (or residual) dunefoot positions comprise an alongshore uniform and an alongshore non‐uniform component. The former is expressed as 10 to 15 m of landward retreat along extensive (>10 km) stretches of coast during years with severe storm surges and as up to 5 m of seaward advance during years without significant storm activity. The latter, alongshore non‐uniform component is organized in sandwave‐like patterns, which may have a longevity of decades to up to the duration of the entire data set (150 years). Their wavelengths vary along the coast, from 3·5 to 10 km; migration rates are 0–200 m a −1 . Dunefoot sandwaves are shown to be the shoreward extensions of similar sandwave patterns in the beach position. The non‐uniform dunefoot behaviour constitutes at least 80 per cent of the total residual dunefoot dynamics, implying that along the Dutch coast residual dunefoot variability is controlled by temporal and spatial variability in beach characteristics, and not by storm‐induced uniform erosion. Various potential mechanisms causing beach sandwaves are discussed. Copyright © 2002 John Wiley & Sons, Ltd.