Premium
Climate–surface–pore‐water interactions on a salt crusted playa: implications for crust pattern and surface roughness development measured using terrestrial laser scanning
Author(s) -
Nield Joanna M.,
Wiggs Giles F. S.,
King James,
Bryant Robert G.,
Eckardt Frank D.,
Thomas David S. G.,
Washington Richard
Publication year - 2016
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3860
Subject(s) - crust , geology , aeolian processes , surface roughness , moisture , microclimate , humidity , relative humidity , water content , landform , erosion , atmospheric sciences , geomorphology , hydrology (agriculture) , geophysics , meteorology , materials science , geotechnical engineering , physics , archaeology , composite material , history
Sodium accumulating playas (also termed sodic or natric playas) are typically covered by polygonal crusts with different pattern characteristics, but little is known about the short‐term (hours) dynamics of these patterns or how pore water may respond to or drive changing salt crust patterning and surface roughness. It is important to understand these interactions because playa‐crust surface pore‐water and roughness both influence wind erosion and dust emission through controlling erodibility and erosivity. Here we present the first high resolution (10 −3 m; hours) co‐located measurements of changing moisture and salt crust topography using terrestrial laser scanning (TLS) and infra‐red imagery for Sua Pan, Botswana. Maximum nocturnal moisture pattern change was found on the crests of ridged surfaces during periods of low temperature and high relative humidity. These peaks experienced non‐elastic expansion overnight, of up to 30 mm and up to an average of 1.5 mm/night during the 39 day measurement period. Continuous crusts however showed little nocturnal change in moisture or elevation. The dynamic nature of salt crusts and the complex feedback patterns identified emphasize how processes both above and below the surface may govern the response of playa surfaces to microclimate diurnal cycles. © 2015 The Authors. Earth Surface Processes and Landforms published by John Wiley & Sons Ltd.