Premium
Ecosystem carbon stocks across a tropical intertidal habitat mosaic of mangrove forest, seagrass meadow, mudflat and sandbar
Author(s) -
Phang Valerie X. H.,
Chou L. M.,
Friess Daniel A.
Publication year - 2015
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3745
Subject(s) - seagrass , blue carbon , mangrove , intertidal zone , environmental science , ecosystem , habitat , ecology , shoal , marine habitats , salt marsh , carbon sequestration , intertidal ecology , carbon cycle , fishery , oceanography , biology , geology , carbon dioxide
Intertidal habitats provide numerous ecosystem services, including the sequestration and storage of carbon, a topic of great recent interest owing to land‐cover transitions and climate change. Mangrove forests and seagrass meadows form a continuum of intertidal habitats, alongside unvegetated mudflats and sandbars, however, studies that consider carbon stocks across these spatially‐linked, threatened ecosystems are limited world‐wide. This paper presents the results of a field‐based carbon stock assessment of aboveground, belowground and sediment organic carbon stock to a depth of 1 m at Chek Jawa, Singapore. It is the first study of ecosystem carbon stocks of both vegetated and unvegetated intertidal habitats in the tropics. Ecosystem carbon stocks were 497 Mg C ha ‐1 in the mangrove forest and 138 Mg C ha ‐1 in the seagrass meadow. Sediment organic carbon stock dominated the total storage in both habitats, constituting 62% and >99% in the mangrove forest and seagrass meadow, respectively. In the adjacent mudflat and sandbars, which had no vegetative components, sediment organic carbon stock ranged from 124–143 Mg C ha ‐1 , suggesting that unvegetated habitats have a carbon storage role on the same order of importance as seagrass meadows. This study reinforces the importance of sediment in carbon storage within the intertidal ecosystem, and demonstrates the need to consider unvegetated habitats in intertidal ‘blue carbon’ stock assessments. Copyright © 2015 John Wiley & Sons, Ltd.