z-logo
Premium
Coupling between landslides and eroding stream channels reconstructed from spruce tree rings (examples from the Carpathians and Sudetes – Central Europe)
Author(s) -
Wistuba Małgorzata,
Malik Ireneusz,
Wójcicki Krzysztof,
Michałowicz Patrycja
Publication year - 2014
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3632
Subject(s) - landslide , geology , erosion , sinuosity , fluvial , bedrock , geomorphology , colluvium , channel (broadcasting) , debris , precipitation , landslide classification , hydrology (agriculture) , streams , alluvium , geotechnical engineering , structural basin , geography , computer network , oceanography , engineering , meteorology , computer science , electrical engineering
The analysis of the positive feedback between landslides and erosion requires determination of the precise temporal and spatial relations between events of colluvium delivery and fluvial erosion. In our study we use decennial datasets on the occurrence of landsliding and erosion achieved through dendrochronological methods. Four sites covering areas of landslide slopes and adjacent valley floors with stream channels were studied. Landsliding on slopes was dated from the tree‐ring eccentricity developed in stems tilted due to bedrock instability. Erosion in channels was dated using the wood anatomy of roots exposed by erosion of the soil cover. Analysis of the temporal relations between dated landsliding, erosion and precipitation record has revealed that two types of repeating sequences can be observed: (1) rainfall → landsliding → erosion; (2) rainfall → erosion → landsliding. These sequences are an indication of the occurrence of slope‐channel positive feedback in the sites studied. In the first type, landsliding triggered by rainfall delivers colluvia into the valley floor and causes its narrowing, which in turn causes increased erosion. In the second type erosion triggered by rainfall disturbs the slope equilibrium and causes landsliding. Landsliding and erosion, once triggered by precipitation, can occur alternately in years with average precipitation and reinforce one another. Bidirectional coupling between landsliding and channel erosion was shown notably through the effects of channel shifting and forced sinuosity and by increased erosion of the slopes opposite the active landslides. Observations also suggest that the repetition of sequences described over longer periods of time can lead to a general widening of the valley floor at the expense of slopes and to a gradual change of the valley cross‐profile from narrow, V‐shaped into a wide flat‐bottomed. Thus landsliding–erosion coupling/positive feedback was recognized as an important factor shaping hillslope–valley topography of the mid‐mountain areas studied. Copyright © 2014 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here