z-logo
Premium
Application of a multi‐temporal, LiDAR‐derived, digital terrain model in a landslide‐volume estimation
Author(s) -
Tseng ChihMing,
Lin ChingWeei,
Stark Colin P.,
Liu JinKin,
Fei LiYuan,
Hsieh YuChung
Publication year - 2013
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3454
Subject(s) - landslide , typhoon , lidar , digital elevation model , terrain , geology , debris flow , volume (thermodynamics) , scale (ratio) , hydrology (agriculture) , sediment , debris , remote sensing , geomorphology , cartography , geotechnical engineering , geography , climatology , oceanography , physics , quantum mechanics
Sediments produced by landslides are crucial in the sediment yield of a catchment, debris flow forecasting, and related hazard assessment. On a regional scale, however, it is difficult and time consuming to measure the volumes of such sediment. This paper uses a LiDAR‐derived digital terrain model (DTM) taken in 2005 and 2010 (at 2 m resolution) to accurately obtain landslide‐induced sediment volumes that resulted from a single catastrophic typhoon event in a heavily forested mountainous area of Taiwan. The landslides induced by Typhoon Morakot are mapped by comparison of 25 cm resolution aerial photographs taken before and after the typhoon in an 83.6 km 2 study area. Each landslide volume is calculated by subtraction of the 2005 DTM from the 2010 DTM, and the scaling relationship between landslide area and its volume are further regressed. The relationship between volume and area are also determined for all the disturbed areas ( V L  = 0.452 A L 1.242 ) and for the crown areas of the landslides ( V L  = 2.510 A L 1.206 ). The uncertainty in estimated volume caused by use of the LiDAR DTMs is discussed, and the error in absolute volume estimation for landslides with an area >10 5  m 2 is within 20%. The volume–area relationship obtained in this study is also validated in 11 small to medium‐sized catchments located outside the study area, and there is good agreement between the calculation from DTMs and the regression formula. By comparison of debris volumes estimated in this study with previous work, it is found that a wider volume variation exists that is directly proportional to the landslide area, especially under a higher scaling exponent. Copyright © 2013 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here