z-logo
Premium
Range imaging: a new method for high‐resolution topographic measurements in small‐ and medium‐scale field sites
Author(s) -
Nitsche Manuel,
Turowski Jens M.,
Badoux Alexandre,
Rickenmann Dieter,
Kohoutek Tobias K.,
Pauli Michael,
Kirchner James W.
Publication year - 2012
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3322
Subject(s) - remote sensing , elevation (ballistics) , terrain , digital elevation model , photogrammetry , range (aeronautics) , lidar , image resolution , optics , scale (ratio) , geology , interpolation (computer graphics) , field of view , materials science , computer science , geography , artificial intelligence , physics , image (mathematics) , cartography , astronomy , composite material
Topographic measurements are essential for the study of earth surface processes. Three‐dimensional data have been conventionally obtained through terrestrial laser scanning or photogrammetric methods. However, particularly in steep and rough terrain, high‐resolution field measurements remain challenging and often require new creative approaches. In this paper, range imaging is evaluated as an alternative method for obtaining surface data in such complex environments. Range imaging is an emerging time‐of‐flight technology, using phase shift measurements on a multi‐pixel sensor to generate a distance image of a surface. Its suitability for field measurements has yet not been tested. We found ambient light and surface reflectivity to be the main factors affecting error in distance measurements. Low‐reflectivity surfaces and strong illumination contrasts under direct exposure to sunlight lead to noisy distance measurements. However, regardless of lighting conditions, the accuracy of range imaging was markedly improved by averaging multiple images of the same scene. For medium ambient lighting (shade) and a light‐coloured surface the measurement uncertainty was approximately 9 mm. To further test the suitability of range imaging for field applications we measured a reach of a steep mountain stream with a horizontal resolution of approximately 1 cm (in the focal plane of the camera), allowing for the interpolation of a digital elevation model on a 2 cm grid. Comparison with an elevation model obtained from terrestrial laser scanning for the same site revealed that both models show similar degrees of topographic detail. Despite limitations in measurement range and accuracy, particularly at bright ambient lighting, range imaging offers three‐dimensional data in real time and video mode without the need of post‐processing. Therefore, range imaging is a useful complement or alternative to existing methods for high‐resolution measurements in small‐ to medium‐scale field sites. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here