Premium
Contemporary glacigenic inputs to the dust cycle
Author(s) -
Bullard Joanna E.
Publication year - 2013
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3315
Subject(s) - aeolian processes , meltwater , glacial period , geology , glacier , deposition (geology) , earth science , mineral dust , physical geography , sediment , climate change , environmental science , oceanography , geomorphology , meteorology , aerosol , physics , geography
The importance of glacigenic dust in the Earth's system during glacial periods is widely acknowledged. Under contemporary conditions, the world's largest dust sources are in low‐lying, hot, arid regions and this is where most aeolian research is focused. However the processes of dust production and emissions are still operating in cold climate regions, particularly in proglacial areas. This paper assesses current understanding of the relationship between glacierised landscapes and dust emissions and inputs to the global dust cycle. It focuses on how elements in the glacial and aeolian geomorphic sub‐systems interact to determine the magnitude, frequency and timing of aeolian dust emissions, and on feedback mechanisms between the systems. Where they have been measured, dust emission intensity and deposition rates in glacierised catchments are very high, in some cases far exceeding those in lower latitudes, however, few studies span long time scales. The impact of future glacier retreat on the balance between sediment supply, availability and aeolian transport capacity and implications for glacigenic dust emissions is also considered. This balance depends on relative spatial and temporal changes in meltwater suspended sediment concentration and wind strengths, which promote dust emissions, and patterns and rates of soil development and vegetation succession on recently‐deglaciated terrain which protect sediments from deflation. Retreat of the Antarctic ice sheet could mean that in future glacigenic contributions to the dust cycle exceed those of non‐glacigenic sources in the southern hemisphere. Copyright © 2012 John Wiley & Sons, Ltd.