z-logo
Premium
Effects of vegetation on soil slippage by pore pressure modification
Author(s) -
Terwilliger Valery J.
Publication year - 1990
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3290150607
Subject(s) - soil water , chaparral , environmental science , hydrology (agriculture) , vegetation (pathology) , surface runoff , vegetation and slope stability , storm , soil science , geology , ecology , geotechnical engineering , medicine , oceanography , pathology , biology
Influences of vegetation on shallow (< 1 m) soil slip formation through modification of soil water was investigated on hillsides covered by verdant chaparral (dense shrubland), and burned vegetation in the Transverse Ranges of California. Per cent available water and hydraulic potentials were obtained from electrical resistance blocks and tensiometers for one year in soils under burned and unburned vegetation on three slopes. Soil remained moister during a dry period under burned vegetation than under unburned chaparral on two of the three slopes studied. Daily increases in per cent available water and hydraulic potential of soils were greatest for a given storm where soil was driest prior to the storm. Furthermore, water levels in soil tended to be greatest for a given storm where soil water levels had been lowest prior to the storm. These two findings were corroborated by laboratory wetting trials on undisturbed soils of vastly differing mechanical properties in that initially drier soils always absorbed water faster and became wetter than initially moister soils. In the field, soil water levels became similarly high under all vegetation after several storms and varied little throughout the remainder of the wet season. These results contradict the common assumption that depletion of soil water by vegetation would result in slower saturation rates and hence greater resistance of a soil mass to slippage.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here