Premium
Traditional and multivariate techniques in the interpretation of floodplain sediment grain size variations
Author(s) -
Brown A. G.
Publication year - 1985
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3290100310
Subject(s) - floodplain , grain size , principal component analysis , silt , sediment , multivariate statistics , geology , compositional data , soil science , deposition (geology) , statistics , environmental science , hydrology (agriculture) , mineralogy , mathematics , geomorphology , geography , geotechnical engineering , cartography
The vertical and horizontal variation of sedimentary fades is the raw data for the interpretation of flood plain history from which palaeohydrological inferences are frequently drawn. Mixed and fine floodplain sediments present problems of interpretation because of a large grain size range and frequent polymodality caused by the mixing of process‐associated grain size components. This paper discusses the use of traditional grain size statistics and the use of the mode and multivariate statistics. The mode, although much neglected, is indicative of up‐profile grain size changes and has practical advantages over the mean for mixed and fine floodplain sediments. Constrained cluster analysis and principal components analysis are used directly on Coulter counter results. These techniques can rapidly divide a floodplain profile into grain size units and indicate the principal vectors of grain size variation which will be related to the changing processes of deposition. Principal components analysis reveals the importance of the medium to fine silt category in accounting for grain size variations, suggesting that a critical factor in determining the type of alluvial unit deposited is the degree to which it has received fine suspended material. Grain size data from the Lower Severn are used to construct a CM diagram which is compared with a texture triangle. From both the CM and multivariate analysis a generalized backswamp profile is constructed which shows the existence of a coarser top unit caused by the addition of a fine to medium sand component to the underlying sediment during the Late Holocene.