z-logo
Premium
Exploring debris‐flow history and process dynamics using an integrative approach on a dolomitic cone in western Austria
Author(s) -
Procter Emily,
Stoffel Markus,
SchneuwlyBollschweiler Michelle,
Neumann Mathias
Publication year - 2012
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3207
Subject(s) - debris , debris flow , geology , physical geography , hydrology (agriculture) , forest dynamics , environmental science , geography , ecology , oceanography , geotechnical engineering , biology
The evolution of a debris‐flow cone depends on a multitude of factors in the hydrogeomorphic system. Investigations of debris‐flow history and cone dynamics in highly active catchments therefore require an integrative approach with a temporal and spatial resolution appropriate for the goals of the study. We present the use of an orthophoto time series to augment standard dendrogeomorphic techniques to describe the spatio‐temporal dynamics of debris flows on a highly active cone in the western Austrian Alps. Analysis of seven orthophotos since 1951 revealed a migration of active deposition areas with a resulting severe loss of forest cover (> 80%) and a mean tree loss per year of 10·4 (range 1·3–16·6 trees per year). Analysis of 193 Pinus mugo ssp. uncinata trees allowed the identification of 161 growth disturbances corresponding to 16 debris flows since 1839 and an average decadal frequency of 0·9 events. As a result of the severe loss of forest cover, we speculate that < 20% of the more recent events were actually captured in the tree‐ring record, giving a decadal return interval of ~7·5 events for a period of 60 years. Based on three annual field observations, it is evident that this catchment (the Bärenrüfe ) produces very frequent (< 1 yr), small (in the order of a few 10 to 100 m 3 ) debris flows with minor material relocation. The specific challenges of tree‐ring analysis in this tree species and in highly active environments are explicitly addressed in the discussion and underline the necessity of employing complementary methods of analysis in an integrative manner. Copyright © 2012 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here