z-logo
Premium
Reconstructing paleoenvironments and palaeoclimates in drylands: what can landform analysis contribute?
Author(s) -
Thomas David S. G.
Publication year - 2013
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.3190
Subject(s) - landform , quaternary , geology , nexus (standard) , sedimentary depositional environment , physical geography , paleontology , proxy (statistics) , earth science , geography , computer science , structural basin , machine learning , embedded system
Quaternary period palaeoenvironmental and palaeoclimatic reconstructions are based on a wide and diverse array of proxy data sets, some of which are geomorphological in nature. In drylands, where organic proxies may be limited, the use of landforms is particularly important, but challenging. The capacity to establish the age of depositional forms, particularly through the use of luminescence dating, has advanced the use of landforms in dryland palaeo‐research, though interpretation of these ‘geoproxy’ records can be complex, especially at the nexus of palaeoclimate and palaeoenvironmental interpretations of past conditions. In this paper the use of aeolian and lacustrine forms in Quaternary research is considered, focusing on the relationships between dynamics, form and climate, and on the essential linkage between process research and palaeoenvironmental research. It is concluded that landform analysis is a critical part of dryland palaeoenvironmental/climate reconstruction, contributing a different set of data compared to other data sources, in terms of the elements of past conditions that are revealed. Five principles are identified to improve the use of geoproxy records in Quaternary research: (1) greater use of geomorphic process studies by Quaternary scientists, to better inform palaeolandform interpretation; (2) further development of the use of chronometric data, especially in terms of interpreting large data; (3) interpret landform records in location‐specific contexts, not in general terms; (4) capitalise of the complexity of spatially‐extensive landform records, which may offer better representations of real Quaternary environmental complexity than ‘at a point’ proxies; (5) establish ways of integrating spatially‐extensive geoproxy records with other palaeoenvironmental records. These challenges are major, but not insurmountable, and should represent goals for geomorphologists, chronologists and quaternary scientists alike. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here