z-logo
Premium
Spatial and temporal controls on historical channel responses – study of an atypical case: Someşu Mic River, Romania
Author(s) -
Perşoiu Ioana,
Rădoane Maria
Publication year - 2011
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.2169
Subject(s) - geology , alluvium , floodplain , channel (broadcasting) , scale (ratio) , meander (mathematics) , physical geography , hydrology (agriculture) , drainage basin , avulsion , elevation (ballistics) , climatology , geomorphology , geography , cartography , geometry , mathematics , engineering , geotechnical engineering , electrical engineering
In this paper the spatial and temporal responses of the Someşu Mic River (Romania) to natural and anthropogenic controls over the past 150 years are analysed, based on a series of morphometric parameters extracted from five successive sets of topographic maps and one set of orthophotos. Prior to the intensive hydrotechnical interventions of the last four decades, the river was characterized by a complex alternation of different channel types, resulting in a mixture of alluvial and mixed sinuous – meandering – sinuous anabranched – meandering anabranched reaches, each a few hundred metres to a few kilometres long. The main cause for this spatial behaviour was the local geology. Its effects were intensified by a larger scale slope, slightly higher than along a longitudinal profile with normal concavity, as a consequence of the presence of a 400 m elevation knick‐point located in the catchment area. A generalized maintenance of river in the floodplain perimeter during the entire interval of study (centennial scale), with local planform adjustments and lack of median scale avulsion in lateral tilting areas and along the anabranched reaches, channel lengthening and meander development during hydrological stable periods and channel shortening and increasing of natural cutoffs during periods with higher incidence of floods (decadal scale), and the incapacity of local morphologic changes resulted from human interventions to completely counterbalance general trends (decadal scale), supports the idea of decreasing the amplitude and frequency of important floods, after the end of the Little Ice Age. Channel metamorphosis by canalization, diminishing/elimination of overflows and medium‐scale avulsions by changes in flow regimes (dams) and the presence of dykes in the floodplain perimeter, channel narrowing (43%) and incision (at least after 1945) downstream from dams, and probably because of in‐channel gravel mining are the main anthropically induced changes along the Someşu Mic River. Even if human impact is important, both at the drainage basin scale and along the Someşu Mic River, it has only local impacts, subordinated to climate. The low level of human impact on this river could be the consequence of the higher general slope downstream from 400 m elevation knick‐point, which probably forces the positioning of its effects under an important internal threshold of the fluvial system. This boundary condition defines Someşu Mic River as an atypical river. This study supports the idea that climate has a more important role in the post‐Little Ice Age (LIA) rivers' behaviour than currently accepted. Copyright © 2011 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here