z-logo
Premium
Turbulent shear stresses in hydraulic jumps, bores and decelerating surges
Author(s) -
Chanson Hubert
Publication year - 2011
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.2031
Subject(s) - hydraulic jump , jump , turbulence , surge , mechanics , geology , hydraulics , shear (geology) , mixing (physics) , channel (broadcasting) , geotechnical engineering , flow (mathematics) , geomorphology , physics , engineering , telecommunications , petrology , quantum mechanics , thermodynamics
In an open channel, a sudden rise in water level induces a positive surge, or bore, that may develop as a hydraulic jump in translation. When the surge propagates against an adverse slope, it decelerates until it becomes a stationary hydraulic jump. Both hydraulic jumps and decelerating surges induce some intense turbulent mixing and have some major impact on the sediment transport in natural systems. Herein, a physical investigation was conducted in a relatively large rectangular channel. Hydraulic jumps and surges were generated by the rapid closure of a gate at the channel downstream end. The turbulent shear stresses were measured with high temporal and spatial resolution (200 Hz sampling rate) in the jump flow. A comparison between the stationary hydraulic jump, hydraulic jump in translation and decelerating surge measurements showed some marked differences in terms of turbulent mixing. The results highlighted some intense mixing beneath the jump front and roller for all configurations. The levels of turbulent stresses were one to two orders of magnitude larger than a critical threshold for sediment motion. The findings provide some insights into the hydraulic jump migration processes in mobile bed channels, and the complex transformation from a moving jump into a stationary jump. Copyright © 2010 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here