Premium
Reconciled bedload sediment transport rates in ephemeral and perennial rivers
Author(s) -
Cao Zhixian,
Hu Peng,
Pender Gareth
Publication year - 2010
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.2005
Subject(s) - bed load , hyperconcentrated flow , ephemeral key , sediment transport , flash flood , geology , hydrology (agriculture) , sediment , perennial stream , fluvial , environmental science , geomorphology , flood myth , streams , geotechnical engineering , ecology , geography , computer network , archaeology , structural basin , biology , computer science
It has been thought for some time that bedload sediment transport rates may differ markedly in ephemeral and perennial rivers and, supporting this thought, there has been observation of very high rates of bedload transport by flash floods in the ephemeral river Nahal Yatir. However, until now, there has been no quantitative model resolving the observation, nor a theory capable of explaining why bedload transport rates by unsteady flash floods can be reasonably well described by bedload transport capacity formulae initially derived for steady flows. Here a time scale analysis of bedload transport is presented as pertaining to Nahal Yatir, which demonstrates that bedload transport can adapt sufficiently rapidly to capacity determined exclusively by local flow regime, and accordingly the transport capacity formulations developed for steady flows can be applied even under unsteady flows such as flash floods. Complementing the time scale analysis, a series of computational exercises using a coupled shallow water hydrodynamic model are shown to adequately resolve the observation of the very high rates of bedload transport by flash floods in Nahal Yatir. While bedload transport rates in ephemeral and perennial rivers differ remarkably when evaluated against a pure flow parameter such as specific stream power, they are essentially reconciled if assessed with a physically sensible parameter incorporating not only the flow regime but also the sediment particle size. The present finding underpins the practice of fluvial geomorphologists relating measured bedload transport to local flow and sediment characteristics only, irrespective of whether the flow is unsteady or steady. Copyright © 2010 John Wiley & Sons, Ltd.