Premium
Comparison of different mass transport calculation methods for wind erosion quantification purposes
Author(s) -
Panebianco Juan E.,
Buschiazzo Daniel E.,
Zobeck Ted M.
Publication year - 2010
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.1995
Subject(s) - mass flux , exponential function , interpolation (computer graphics) , gaussian , sampling (signal processing) , environmental science , wind speed , mathematics , meteorology , mechanics , mathematical analysis , physics , motion (physics) , classical mechanics , quantum mechanics , detector , optics
Abstract Quantitative estimation of the material transported by the wind under field conditions is essential for the study and control of wind erosion. A critical step of this calculation is the integration of the curve that relates the variation of the amount of the material carried by the wind with height. Several mathematical procedures have been proposed for this calculation, but results are scarce and controversial. One objective of this study was to assess the efficiency of three mathematical models (a rational, an exponential, and a simplified Gaussian function) for the calculation of the mass transport, as compared to the linear spline interpolation. Another objective of this study was to compare the mass transport calculated from field measurements obtained from a minimum of three discrete sampling heights with measurements of nine sampling heights. With this purpose, wind erosion was measured under low surface roughness conditions on an Entic Haplustoll during 25 events. The rational function was found to be mathematically limited for the estimation of wind eroded sediment mass flux. The simplified Gaussian model did not fit to the vertical mass flux profile data. Linear spline interpolation generally produced higher mass transport estimates than the exponential equation, and it proved to be a very flexible and robust method. Using different sampling arrangements and different mass flux models can produce differences of more than 45% in mass transport estimates, even under similar field conditions. Under the conditions of this study, at least three points between the soil surface and 1·5 m high, including one point as closest as possible to the surface, should be sampled in order to obtain accurate mass transport estimates. Additionally, the linear spline interpolation and the non‐linear regression using an exponential model, proved to be mathematically reliable methods for calculating the mass transport. Copyright © 2010 John Wiley & Sons, Ltd.