Premium
High resolution quantification of gully erosion in upland peatlands at the landscape scale
Author(s) -
Evans Martin,
Lindsay John
Publication year - 2010
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.1918
Subject(s) - peat , digital elevation model , geology , erosion , hydrology (agriculture) , elevation (ballistics) , vegetation (pathology) , aerial photography , lidar , scale (ratio) , environmental science , physical geography , remote sensing , geomorphology , geography , cartography , medicine , geotechnical engineering , geometry , archaeology , mathematics , pathology
Abstract The upland peatlands of the UK are severely eroded, with large areas affected by gully erosion. The peatlands are important areas of carbon storage and provide a range of other ecosystem services including water supply and biodiversity all of which are negatively impacted by erosion of the upland surface. The magnitude of the gully erosion, and consequent adjustment of the peatland morphology, is such that in degraded peatlands the extent and magnitude of erosion is a major control on peatland function. Accurate mapping of gully form is therefore a necessary precondition to the understanding and management of these systems. This paper develops an approach to extracting gully maps from high resolution digital elevation models (DEMs). Gully maps of the Bleaklow Plateau in northern England were derived from a 2 m LiDAR DEM by combining areas of low difference from mean elevation and high positive plan curvature. Gully depth was modelled by interpolating between gully edges. Testing of the gully mapping and depth modelling against aerial photography, manual interpretation of the DEM and ground survey revealed that gully plan form is well represented and gully width and depth are modelled with tolerances close to the horizontal and vertical resolution of the LiDAR imagery. Estimates of gully width and depth were less reliable for gullies with total width of less than four pixels. The approach allows for the first time the derivation of accurate estimates of gully extent and magnitude over large areas and provides the basis for modelling a range of processes controlled by gullying. The approach has wider applicability to mapping gully erosion in a wide range of environments. Copyright © 2010 John Wiley & Sons, Ltd.