z-logo
Premium
Techniques to measure the dry aeolian deposition of dust in arid and semi‐arid landscapes: a comparative study in West Niger
Author(s) -
Goossens Dirk,
Rajot Jean Louis
Publication year - 2008
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.1533
Subject(s) - deposition (geology) , aeolian processes , arid , environmental science , particle deposition , hydrology (agriculture) , particle (ecology) , atmospheric sciences , mineralogy , soil science , geology , remote sensing , meteorology , aerosol , geomorphology , geotechnical engineering , geography , paleontology , sediment , oceanography
Seven techniques designed to measure the dry aeolian deposition of dust on a desert surface were tested during field experiments in Niger, central‐west Africa. Deposition fluxes were measured during eight periods of 3–4 days each. Experimental techniques tested were the MDCO (marble dust collector) method, the Frisbee method, the glass plate method (optical analysis of dust deposited on glass surfaces using particle imaging software), the soil surface method (deposition on a simulated desert floor) and the CAPYR (capteur pyramidal) method. Theoretical techniques tested were the inferential method and the combination method (gradient method extended with a deposition term for coarse dust particles). The results obtained by the MDCO, Frisbee, inferential and combination methods could be directly compared by converting the data to identical standard conditions (deposition on a water surface producing no resuspension). The results obtained by the other methods (glass plate, soil surface, CAPYR) were compared relatively. The study shows that the crude (unconverted) deposition fluxes of the five experimental techniques were similar, while the crude deposition fluxes calculated by the two theoretical techniques were substantially higher, of the order of four to five times as high as for the experimental techniques. Recalculation of the data to identical environmental conditions (the standard water surface) resulted in nearly identical deposition fluxes for the MDCO, Frisbee, inferential and combination techniques, although the latter two still had slightly higher values (but the differences remained small). The measurements illustrate the need to include a grain shape factor in theoretical dust deposition models. Without such a factor, theoretical models overestimate the deposition. The paper also discusses the advantages and disadvantages of the techniques tested. Copyright © 2007 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here