z-logo
Premium
Modelling the effect of waves, weathering and beach development on shore platform development
Author(s) -
Trenhaile A. S.
Publication year - 2005
Publication title -
earth surface processes and landforms
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 1.294
H-Index - 127
eISSN - 1096-9837
pISSN - 0197-9337
DOI - 10.1002/esp.1166
Subject(s) - tidal range , geology , intertidal zone , cliff , shore , sediment , wave height , geomorphology , range (aeronautics) , submarine pipeline , erosion , coastal erosion , geotechnical engineering , oceanography , estuary , materials science , paleontology , composite material
A mathematical model was used to study shore platform development. Mechanical wave erosion was dependent on such variables as tidal range, wave height and period, breaker height and depth, breaker type, surf zone width and bottom roughness, submarine gradient, rock resistance and the elevational frequency of wave action within the intertidal zone. Also included were the effects of sand and pebble accumulation, cliff height and debris mobility, and downwearing associated with tidal wetting and drying. The occurrence, location and thickness of beaches often depended on initially quite minor variations in platform morphology, but owing to their abrasive or protective effect on underlying rock surfaces, they were able to produce marked differences in platform morphology. Generalizations are difficult, but the model suggests that platform gradient increases with tidal range. Platform width also increases with tidal range with slow downwearing but it decreases with fast downwearing. Platform gradient decreases and width increases with wave energy, and decreasing rock resistance and platform roughness. With low tidal range, platform gradient is generally lower and platform width greater with beaches of fine sand than with gravel, but the relationship is more variable with a high tidal range. Platform width increases and platform gradient decreases with the rate of downwearing on bare surfaces, particularly in low tidal range environments, but the pattern is less clear on beach‐covered platforms. Platforms with large amounts of beach sediment tend to be narrower and steeper than bare platform surfaces. Platform gradient increases and platform width decreases with increasing cliff height and with decreasing cliff debris mobility. Copyright © 2005 John Wiley & Sons, Ltd.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here