
Thermal management performance of cavity cold plates for pouch Li‐ion batteries using in electric vehicles
Author(s) -
Wang Tong,
Zhang Xin,
Zeng Qingliang,
Gao Kuidong
Publication year - 2020
Publication title -
energy science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.638
H-Index - 29
ISSN - 2050-0505
DOI - 10.1002/ese3.798
Subject(s) - materials science , thermal , coolant , volume (thermodynamics) , pressure drop , mass flow rate , battery (electricity) , mechanics , nuclear engineering , composite material , mechanical engineering , thermodynamics , engineering , physics , power (physics)
The cold plate cooling system has become one of the most practical and promising Li‐ion battery thermal management systems for electric vehicles. The existing cold plate has complex structure with high production cost, and the energy consumption is relatively high. In this paper, a detailed optimization study of cavity cold plate is carried out. The heat generation data of the pouch Li‐ion batteries were obtained through experiments, and the data were applied to the finite element method simulation of the cavity cold plate thermal management system. The effects of cavity cold plate thickness ( d 1 ), cold plate inlet and outlet width ( d 2 ), and inlet coolant mass flow rate on battery temperature and cold plate pressure drop were discussed. The results showed that the optimization allowed the cavity cold plate to control the battery maximum temperature within 40°C and temperature difference within 5°C. Under the same volume of cold plates, the average pressure drop reduction rates of models where Δ d (the difference between d 1 and d 2 ) is 1 mm are 65% higher than that of the models where d 2 is 1 mm. This study has practical significance for improving the design efficiency of cavity cold plate.