z-logo
open-access-imgOpen Access
Optimization and analysis of a bioelectricity generation supply chain under routine and disruptive uncertainty and carbon mitigation policies
Author(s) -
Saghaei Mahsa,
Dehghanimadvar Mohammad,
Soleimani Hamed,
Ahmadi Mohammad Hossein
Publication year - 2020
Publication title -
energy science and engineering
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.638
H-Index - 29
ISSN - 2050-0505
DOI - 10.1002/ese3.716
Subject(s) - greenhouse gas , renewable energy , supply chain , environmental economics , sustainability , carbon tax , carbon offset , climate change mitigation , natural resource economics , climate change , environmental science , business , economics , engineering , ecology , marketing , electrical engineering , biology
Abstract Increasing greenhouse gas emissions and negative environmental consequences have raised worldwide attention to ecological issues. The development of carbon regulations (CRs) beside carbon capture and storage (CCS) systems is part of carbon mitigation policies (CMPs), which are following in recent years to control and manage carbon liberation. Along with environemtal policies, the utilization of renewable energy resources have been promoted significantly. However, the economic opportunities for renewable energy development considering CMPs have not addressed extensively. In this study, a stochastic mathematical programming model has been presented to minimize cost and downside risk (DSR) of the bioelectricity generation supply chain considering the pre‐ and postdisaster conditions. The role of several CMPs on the economic behavior of the system has been analyzed by investigating the potential uncertainties on material availability, material quality, and consumer demand. To consider disruption effects, the postdisaster stage has been classified into several substages including damage, recovery, and back to the sustainability stages. Mississippi State after the Katrina Hurricane is addressed as a case study to examine the performance of the proposed model. The results demonstrated that the occurrence of disruptive uncertainties creates 8,978,502 $, 8,864,335 $ and 8,884,055 $ as the DSR, under carbon tax policy (CTP), carbon offset policy (COP), and CCS, respectively. The effect of disruptive scenario 1 with a 15% reduction of resource has led to the greatest postdisaster supply chain costs in comparison with other scenarios. Although the financial analysis showed CTP has the greatest DSR after the occurrence of disaster, this policy has the most investment attractions, as well as COP, with the internal rate of return (IRR) of 9%. While implementing the CCS policy with the IRR of 2% creates 7% missed opportunity costs compared with other CMPs.

The content you want is available to Zendy users.

Already have an account? Click here to sign in.
Having issues? You can contact us here