Premium
Support vector machines for short‐term electrical load forecasting
Author(s) -
Mohandes Mohamed
Publication year - 2002
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.787
Subject(s) - support vector machine , artificial neural network , term (time) , electrical load , computer science , data set , set (abstract data type) , electricity , data mining , artificial intelligence , engineering , machine learning , voltage , physics , quantum mechanics , electrical engineering , programming language
Abstract Short‐term electrical load forecasting plays a vital role in the electric power industries. It ensures the availability of supply of electricity, as well as providing the means of avoiding over‐ and under‐utilization of generating capacity and therefore optimizes energy prices. Several methods have been applied to short‐term load forecasting, including statistical, regression and neural networks methods. This paper introduces support vector machines, the latest neural network algorithm, to short‐term electrical load forecasting and compares its performance with the auto‐regression model. The results indicate that support vector machines compare favourably against the auto‐regressive model using the same data for building and testing both models based on the root‐mean‐square errors between the actual and the predicted data. Support vector machines allow the training data set to be increased beyond what is possible using the auto‐regressive model or other neural networks methods. Increasing the training data further improves the performance of support vector machines method. Copyright © 2002 John Wiley & Sons, Ltd.