z-logo
Premium
A hybrid approach based on IGDT‐MOCMA‐ES method for optimal operation of smart distribution network under severe uncertainties
Author(s) -
Khajehvand Masoud,
Fakharian Ahmad,
Sedighizadeh Mostafa
Publication year - 2021
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.6474
Subject(s) - demand response , smart grid , computer science , electricity , control reconfiguration , mathematical optimization , financial engineering , revenue , optimization problem , electricity market , stochastic optimization , operations research , reliability engineering , engineering , economics , mathematics , finance , electrical engineering , embedded system
Summary Uncertainties involved in renewable generation and electrical demand pose significant technical challenges with the concomitant financial consequences in smart distribution networks (SDNs), particularly in the current electricity market, which is restructured and features smart grids. The present paper introduces a decision‐making tool based on a risk‐averse strategy to help with the smart distribution network operator (SDNO) in day‐ahead operational practices, including optimal unit commitment (UC) and optimal distribution feeder reconfiguration (DFR). The tool is meant to reduce electricity prices presented to the electrical consumers and to optimize financial transactions with the energy market, distributed generation (DG) reliability, electricity storage system (ESS) dispatch, and planning interruptible electrical demands to secure specified revenue targets for SDNO with the risk‐averse strategy. A bi‐level stochastic optimization problem based on Information gap decision theory (IGDT) is considered to keep the SDNO from risks inherent in the information gap present between the predicted and actual uncertainty variables. The bi‐level stochastic optimization problem is reorganized into a single‐level problem obtained by Karush‐Kuhn‐Tucker method. As uncertainty variables compete to expand their enveloped‐bounds, multi‐objective covariance matrix adaptation‐evolution strategy (MOCMA‐ES) is employed to address the multifaceted IGDT‐based stochastic optimization problem proposed in the study. Finally, the efficiency and efficacy of the suggested model are appraised on an IEEE 33‐bus SDN. Simulation results show that optimal UC with both DFR and demand response program increases the total revenue by 8.1% compared to optimal operation without them.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here