Premium
An experimental investigation for a hybrid phase change material ‐liquid cooling strategy to achieve high‐temperature uniformity of Li‐ion battery module under fast charging
Author(s) -
Chen Siqi,
Garg Akhil,
Gao Liang,
Wei Xuezhe
Publication year - 2020
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.6241
Subject(s) - coolant , phase change material , battery (electricity) , materials science , computer cooling , nuclear engineering , volumetric flow rate , thermal , range (aeronautics) , water cooling , energy consumption , analytical chemistry (journal) , thermodynamics , chemistry , composite material , mechanical engineering , electrical engineering , thermal management of electronic devices and systems , engineering , power (physics) , chromatography , physics
Summary Fast charging is significant for the convenience of long‐term driving. In this study, a hybrid‐phase change material (PCM)‐liquid cooling system is designed for a battery module with eight prismatic cells under high charging current rates. Temperature rise, temperature distribution, and energy consumption of the cooling system are measured in experiments under 3C, 2.5C, and 2C fast charging. The results indicate that the highest coolant flow rate and the largest PCM thickness cannot achieve the optimal thermal performance. Therefore, appropriate coolant flow rate and PCM thickness selection ensure the cooling performance and reduce energy mass and volume consumption. Experimental results demonstrate that the maximum temperature of the module can be decreased from 43°C to 35.6°C, 34.5°C, and 34.8°C by pure PCM, pure liquid cooling, and the hybrid PCM‐liquid cooling system under 3C fast charging; and temperature standard deviation (TSD) can be controlled within 0.9°C, 1.5°C, and 0.96°C, respectively. When the PCM thickness and coolant flow rate are set as 0.65 mm and 54 mL/min, respectively, the hybrid cooling system achieves the optimal thermal performance (maximum temperature: 34.8°C, TSD: 1°C) under 3C fast charging, and the energy consumption (459 J) can be controlled within the acceptable range.