Premium
Development and assessment of geothermal‐based underground pumped hydroenergy storage system integrated with organic Rankine cycle and district heating
Author(s) -
Erdemir Dogan
Publication year - 2020
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.5913
Subject(s) - organic rankine cycle , geothermal gradient , heat pump , exergy , geothermal energy , waste management , environmental science , heating system , energy storage , geothermal heating , electricity , engineering , environmental engineering , waste heat , power (physics) , heat exchanger , mechanical engineering , electrical engineering , thermodynamics , geology , physics , geophysics
Summary This study develops a geothermal‐based underground pumped hydroenergy storage system (UPHES) integrated with an organic Rankine cycle (ORC) and district heating. The ORC has been integrated into the system for contributing the power demand of the pump used during the charging period to pump the water from the underground to the upper reservoir. District heating has been performed by geothermal. Heat recovered from the ORC has been used for the preheating of water used in district heating before entering the upper reservoir. With this proposed integrated system, both the peak energy demand has been shifted to off‐peak hours and district heating has been performed. An ORC has also been included in the system to contribute to the energy demand of the UPHES pump. In order to evaluate the system's performance, thermodynamic analysis has been performed base on energetic and exergetic efficiencies. In the base case study, 60 MWh of electricity has stored by the UPHES. Also, a 2.8 MW of heating demand of 100 houses has been met and a 1.7 MW of power has been generated by the ORC. The power of the UPHES pump has been calculated as 6.81 MW. The efficiency of the UPHES system is 73.34%. Overall energy and exergy efficiencies of the proposed integrated system have been calculated as 93.09% and 78.37%, respectively.