Premium
Importance and applications of DOE/optimization methods in PEM fuel cells: A review
Author(s) -
Karanfil Gamze
Publication year - 2020
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4815
Subject(s) - proton exchange membrane fuel cell , design of experiments , fuel cells , commercialization , taguchi methods , process engineering , response surface methodology , obstacle , engineering , automotive engineering , computer science , chemical engineering , statistics , mathematics , machine learning , political science , law
Summary Although proton exchange membrane (PEM) fuel cells are seen as one of the energy conversion technologies of the future due to their high energy conversion efficiency, low levels of emissions, low temperature operation, and compact systems, studies continue to reduce their cost, which is the biggest obstacle to commercialization. Design of experiment (DOE) methods are frequently used in optimization of PEM fuel cells to reduce their cost by decreasing experimental runs. This paper reviews the main gains subsuming the usage of several DOE and optimization methods in PEM fuel cell components, design, operation conditions, and model parameters. It firstly focuses on the Taguchi method and response surface methodology (RSM) known to be applied usually in PEM fuel cell studies. In addition to these known methods, other experimental design and optimization methods used in PEM fuel cells are discussed, and the results are summarized.