z-logo
Premium
Comparison of the different artificial neural networks in prediction of biomass gasification products
Author(s) -
Yucel Ozgun,
Aydin Ebubekir Siddik,
Sadikoglu Hasan
Publication year - 2019
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4682
Subject(s) - nonlinear autoregressive exogenous model , autoregressive model , artificial neural network , mathematics , engineering , biological system , statistics , computer science , artificial intelligence , biology
Summary In this study, artificial neural networks (ANNs) and a nonlinear autoregressive exogenous (NARX) neural network model were employed in order to model a fixed bed downdraft gasification. The relation between the feature group and the regression performance was investigated. First, feature group consists of the equivalence ratio (ER), air flow rate (AF), and temperature distribution (T0‐T5) obtained from the fixed bed downdraft gasifiers, while the second group includes ultimate and proximate values of biomasses, ER, AF, and the reduction temperature (T0). Models constructed to predict the syngas composition (H 2 , CO 2 , CO, CH 4 ) and calorific value. Experimental gasification data that involve 3831 data samples that belong to pinecone and wood pellet were used for training the ANNs. Different ANN architecture and NARX time series model have been constructed to examine the prediction accuracy of the models. The results of the ANN models were consistent with the experimental data ( R 2 > 0.99). The overall score of NARX time series networks is found to be higher than other architecture types. A successful method is proposed to reduce the number of features, and the effect of the features on the prediction capability was examined by calculating the relative importance index using the Garson's equation.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here