z-logo
Premium
Thermodynamical, economical and environmental evaluation of high efficiency gas turbine cogeneration systems
Author(s) -
Pak P. S.,
Suzuki Y.
Publication year - 1990
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4440140805
Subject(s) - cogeneration , gas turbines , environmental science , process engineering , combined cycle , waste management , environmental engineering , thermodynamics , engineering , electricity generation , mechanical engineering , physics , power (physics)
The paper evaluates the thermodynamical, economical and environmental characteristics of a cogeneration system composed of a gas turbine and a waste heat boiler (system A). Two other systems for increasing power generating efficiency are also evaluated, namely systems B and C, which are constructed by incorporating a regenerative cycle and a dual fluid cycle, respectively, into system A. It has been estimated that system C satisfies an environmental constraint that the nitrogen oxide density exhausted should be less than 100 parts in 10 6 , and that systems A and B also satisfy this constraint if a small amount of steam is injected into the combustor. The power generating efficiencies of systems A and B, in this case, and that of system C have been estimated to be 33.5%, 38.5% and 41.2%, respectively; i.e. the efficiencies of systems B and C can be improved noticeably compared with that of system A. The economics of these systems have also been evaluated based on the value of a profit index, and the systems are all estimated to be economically viable under the conditions assumed. As a result, it has been shown that it is possible to construct cogeneration systems with satisfactory characteristics of both environmental protection and profitability if system A is used in districts where the heat demand is large, system C in districts where the heat demand is small, and system B in districts with intermediate heat demand.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here
Accelerating Research

Address

John Eccles House
Robert Robinson Avenue,
Oxford Science Park, Oxford
OX4 4GP, United Kingdom