z-logo
Premium
Thermal analysis of three zone solar pond
Author(s) -
Sodha M. S.,
Kaushik N. D.,
Rao S. K.
Publication year - 1981
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4440050404
Subject(s) - solar pond , convection zone , thermal energy storage , heat flux , solar energy , environmental science , thermal conduction , convection , thermal , atmospheric sciences , thermodynamics , meteorology , materials science , heat transfer , physics , engineering , electrical engineering
This paper presents a periodic analysis of a three zone solar pond as a solar energy collector and long term storage system. We explicitly take into account the convective heat and mass flux through the pond surface and evaluate the temperature and heat fluxes at various levels in the pond during its year round operation by solving the time dependent Fourier heat conduction equation with internal heat generation resulting from the absorption of solar radiation in the pond water. Eventually, an expression, for the transient rate at which heat can be retrieved from the solar pond to keep the temperature of the zone of heat extraction as constant, is derived. Heat retrieval efficiencies of 40.0 per cent, 32.1 per cent, 28.3 per cent and 25.5 per cent are predicted at collection temperatures of 40, 60, 80 and 100°C, respectively. the retrieved heat flux exhibits a phase difference of about 30 to 45 days with the incident solar flux; the load levelling in the retrieved heat flux improves as the thickness of the non‐convective zone increases. the efficiency of the solar pond system for conversion of solar energy into mechanical work is also studied. This efficiency is found to increase with collection temperature and it tends to level around 5 per cent at collection temperatures about 90°C.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here