z-logo
Premium
Energy harvesting from sediment microbial fuel cell to supply uninterruptible regulated power for small devices
Author(s) -
Prasad Jeetendra,
Tripathi Ramesh Kumar
Publication year - 2019
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4370
Subject(s) - capacitor , microbial fuel cell , voltage , energy harvesting , power (physics) , electrical engineering , uninterruptible power supply , boost converter , power management , low voltage , engineering , electronic engineering , electricity generation , physics , quantum mechanics
Summary Sediment microbial fuel cell (SMFC) is a bio‐electrochemical device that generates direct current by microbes present in the soil. The main drawback of SMFC is the low voltage and fluctuations. Therefore, a suitable scheme is required to obtain sufficient voltage with insignificant fluctuation. This paper proposes an energy harvester power management system (PMS) to get rid of low voltage and fluctuation problem of SMFC. The proposed PMS is composed of a dc‐dc boost converter, switches, and super capacitors. The boost converter (using LTC3108 IC) successfully steps up the voltage up to 2.658 V and provides it to the load for 1.5 minutes. Four SMFCs connected with four individual super capacitors and a single boost converter has been used to implement this scheme. In this strategy, the charging and discharging time of the SMFCs are controlled in such a way that the continuous power will be supplied to the load with the optimum number of SMFCs. This scheme is tested on an experimental setup. It is found that the energy harvester PMS supplies a continuous voltage of 2.658 V with the efficiency of 85.46%, which is sufficient to power for small devices such as remote environment sensors, temperature sensors, LED lighting, and submersible ultrasonic receiver.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here