z-logo
Premium
A review of novel thermal management systems for batteries
Author(s) -
AlZareer Maan,
Dincer Ibrahim,
Rosen Marc A.
Publication year - 2018
Publication title -
international journal of energy research
Language(s) - English
Resource type - Journals
SCImago Journal Rank - 0.808
H-Index - 95
eISSN - 1099-114X
pISSN - 0363-907X
DOI - 10.1002/er.4095
Subject(s) - battery (electricity) , energy storage , thermal , automotive engineering , range (aeronautics) , phase change , environmental science , process engineering , materials science , engineering , engineering physics , aerospace engineering , power (physics) , meteorology , physics , quantum mechanics
Summary In the recent years, significant developments in the electric batteries have made them one of the most promising storage technologies for electrical energy. Among the various rechargeable batteries that are developed, lithium ion batteries stand out due to their capability of storing more energy per unit mass, low discharge rate, low weight, and lack of a memory effect. The advantages that batteries offer have promoted the development of the electric and hybrid electric vehicles. However, during charging and discharging processes, batteries generate heat. If this heat is not removed quickly, the battery temperature will rise, resulting in safety concerns and performance degradation. Thermal management systems are developed to maintain the temperature of the battery within the optimum operation range. This review paper focuses on novel battery thermal management systems (BTMSs). Air, liquid, phase change material, and pool‐based BTMSs are considered. Air‐based thermal management systems are discussed first. Liquid cooling systems and phase change‐based systems are discussed subsequently, and then the recently proposed evaporating pool‐based thermal management system is considered.

This content is not available in your region!

Continue researching here.

Having issues? You can contact us here